Matching Pursuit Based on PSO and Atomic Property
نویسندگان
چکیده
منابع مشابه
Goodwin & Vetterli : Matching Pursuit and Atomic Signal Models
The matching pursuit algorithm can be used to derive signal decompositions in terms of the elements of a dictionary of time-frequency atoms. Using a structured overcomplete dictionary yields a signal model that is both parametric and signal-adaptive. In this paper, we apply matching pursuit to the derivation of signal expansions based on damped sinusoids. It is shown that expansions in terms of...
متن کاملOrthogonal Matching Pursuit under the Restricted Isometry Property
This paper is concerned with the performance of Orthogonal Matching Pursuit (OMP) algorithms applied to a dictionary D in a Hilbert space H. Given an element f ∈ H, OMP generates a sequence of approximations fn, n = 1, 2, . . ., each of which is a linear combination of n dictionary elements chosen by a greedy criterion. It is studied whether the approximations fn are in some sense comparable to...
متن کاملPMU-Based Matching Pursuit Method for Black-Box Modeling of Synchronous Generator
This paper presents the application of the matching pursuit method to model synchronous generator. This method is useful for online analysis. In the proposed method, the field voltage is considered as input signal, while the terminal voltage and active power of the generator are output signals. Usually, the difference equation with a second degree polynomial structure is used to estimate the co...
متن کاملHybrid Video Coding Based on Bidimensional Matching Pursuit
Hybrid video coding combines together two stages: first, motion estimation and compensation predict each frame from the neighboring frames, then the prediction error is coded, reducing the correlation in the spatial domain. In this work, we focus on the latter stage, presenting a scheme that profits from some of the features introduced by the standard H.264/AVC for motion estimation and replace...
متن کاملAn Online Kernel Learning Algorithm based on Orthogonal Matching Pursuit
Matching pursuit algorithms learn a function that is weighted sum of basis functions, by sequentially appending functions to an initially empty basis, to approximate a target function in the least-squares sense. Experimental result shows that it is an effective method, but the drawbacks are that this algorithm is not appropriate to online learning or estimating the strongly nonlinear functions....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Science and Application
سال: 2014
ISSN: 2161-8801,2161-881X
DOI: 10.12677/csa.2014.411039